Энергия. Потенциальная и кинетическая энергия. Закон сохранения энергии. Кинетическая и потенциальная энергия Закон сохранения полной кинетической энергии




Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

ОПРЕДЕЛЕНИЕ

Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:

ОПРЕДЕЛЕНИЕ

Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:

Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

ПРИМЕР 1

Задание Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г.
Решение Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:

Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы:

Изменение кинетической энергии пули:

Таким образом, можно записать:

откуда сила сопротивления земляного вала:

Переведем единицы в систему СИ: г кг.

Вычислим силу сопротивления:

Ответ Сила сопротивления вала 3,8 кН.

ПРИМЕР 2

Задание Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий.
Решение Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:

откуда скорость плиты с грузом после удара:

По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины:

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении - это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F * S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается. Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия - это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения. Кроме того, энергия - это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии:

  • * потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;
  • * кинетическая поступательного движения;
  • * кинетическая вращательного движения;
  • * потенциальная деформации элементов системы;
  • * тепловая;
  • * обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина - на шарик, натянутая тетива - на стрелу.

Потенциальная энергия - это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела.

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m * g * h

Потенциальная энергия упругих тел:

где k - жёсткость пружины; х - её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна:

где m - масса, V - линейная скорость, J - момент инерции системы, щ - угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов. Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу. Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол - полная механическая энергия системы; Ек - кинетическая энергия системы; Епот - потенциальная энергия системы; U - внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении. При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению. Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет имевид:

импульс ньютон кинетический

где mi - масса i-го звена; g - ускорение свободного падения; hi - высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); - скорость поступательного движения центра масс; Ji - момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; щ - мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.), тем большая часть работ затрачивается не на полезный результат - перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ. Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

Гл.2-3, §9-11

План лекции

    Работа и мощность

    Закон сохранения импульса.

    Энергия. Потенциальная и кинетическая энергии. Закон сохранения энергии.

  1. Работа и мощность

Когда под действием некоторой силы тело совершает перемещение, то действие силы характеризуется величиной, которая называется механической работой.

Механическая работа - мера действия силы, в результате которого тела совершают перемещение.

Работа постоянной силы. Если тело движется прямолинейно под действием постоянной силы , составляющей некоторый угол  с направлением перемещения (рис.1), работа равна произведению этой силы на перемещение точки приложения силы и на косинус угла  между векторами и ; или работа равна скалярному произведению вектора силы на вектор перемещения:


Работа переменной силы. Чтобы найти работу переменной силы, пройденный путь разбивают на большое число малых участков так, чтобы их можно было считать прямолинейными, а действующую в любой точке данного участка силу - постоянной.

Элементарная работа (т.е. работа на элементарном участке ) равна , а вся работа переменной силы на всем пути S находится интегрированием: .

В качестве примера работы переменной силы рассмотрим работу, совершаемую при деформации (растяжении) пружины, подчиняющейся закону Гука.

Если начальная деформация x 1 =0, то .

При сжатии пружины совершается такая же работа.

Графическое изображение работы (рис.3).

На графиках работа численно равна площади заштрихованных фигур.

Для характеристики быстроты совершения работы вводят понятие мощности.

Мощность постоянной силы численно равна работе, совершаемой этой силой за единицу времени.

1 Вт- это мощность силы, которая за 1 с совершает 1 Дж работы.

В случае переменной мощности (за малые одинаковые промежутки времени совершается различная работа) вводится понятие мгновенной мощности:

где
скорость точки приложения силы.

Т.о. мощность равна скалярному произведению силы на скорость точки её приложения.

Т.к.

2. Закон сохранения импульса.

Механической системой называется совокупность тел, выделенная для рассмотрения. Тела, образующие механическую систему, могут взаимодействовать, как между собой, так и с телами, не принадлежащими данной системе. В соответствие с этим силы, действующие на тела системы, подразделяют на внутренние и внешние.

Внутренними называются силы, с которыми тела системы взаимодействуют между собой

Внешними называются силы, обусловленные воздействием тел, не принадлежащих данной системе.

Замкнутой (или изолированной) называется система тел, на которую не действуют внешние силы.

Для замкнутых систем оказываются неизменными (сохраняются) три физических величины: энергия, импульс и момент импульса. В соответствии с этим имеют место три закона сохранения: энергии, импульса, момента импульса.

Рассмотрим систему, состоящую из 3-х тел, импульсы которых
и на которые действуют внешние силы (рис. 4).Согласно 3 закону Ньютона, внутренние силы попарно равны и противоположно направлены:

Внутренние силы:

Запишем основное уравнение динамики для каждого из этих тел и сложим почленно эти уравнения

Для N тел:

.

Сумма импульсов тел, составляющих механическую систему, называется импульсом системы:

Т.о., производная по времени импульса механической системы равна геометрической сумме внешних сил, действующих на систему,

Для замкнутой системы
.

Закон сохранения импульса : импульс замкнутой системы материальных точек остается постоянным.

Из этого закона следует неизбежность отдачи при стрельбе из любого орудия. Пуля или снаряд в момент выстрела получают импульс, направленный в одну сторону, а винтовка или орудие получают импульс, направленный противоположно. Для уменьшения этого эффекта применяют специальные противооткатные устройства, в которых кинетическая энергия орудия превращается в потенциальную энергию упругой деформации и во внутреннюю энергию противооткатного устройства.

Закон сохранения импульса лежит в основе движения судов (подводных лодок) при помощи гребных колес и винтов, и водометных судовых двигателей (насос всасывает забортную воду и отбрасывает ее за корму). При этом некоторое количество воды отбрасывается назад, унося с собой определенный импульс, а судно приобретает такой же импульс, направленный вперед. Этот же закон лежит в основе реактивного движения.

Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. При таком ударе механическая энергия частично или полностью переходит во внутреннюю энергию соударяющихся тел, т.е. закон сохранения энергии не выполняется, выполняется только закон сохранения импульса.

,

Теория абсолютно упругих и абсолютно неупругих ударов используется в теоретической механике для расчета напряжений и деформаций, вызванных в телах ударными силами. При решении многих задач удара часто опираются на результаты разнообразных стендовых испытаний, анализируя и обобщая их. Теория удара широко используется при расчетах взрывных процессов; применяется в физике элементарных частиц при расчетах столкновений ядер, при захвате частиц ядрами и в других процессах.

Большой вклад в теорию удара внёс российский академик Я.Б.Зельдович, который, разрабатывая в 30-х годах физические основы баллистики ракет, решил сложную задачу удара тела, летевшего с большой скоростью по поверхности среды.

МЕХАНИЧЕСКАЯ ЭНЕРГИЯ

Энергией называется скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Для характеристики различных форм движения материи вводятся соответствующие виды энергии, например: механическая, внутренняя, энергия электростатических, внутриядерных взаимодействий и др.

Энергия подчиняется закону сохранения, который является одним из важнейших законов природы.

Механическая энергия Е характеризует движение и взаимодействие тел и является функцией скоростей и взаимного расположения тел. Она равна сумме кинетической и потенциальной энергий.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Рассмотрим случай, когда на тело массой m действует постоянная сила (она может быть равнодействующей нескольких сил) и векторы силы и перемещения направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F∙s. Модуль силы по второму закону Ньютона равен F = m∙a, а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением

Отсюда для работы получаем

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

Тогда равенство (1) можно записать в таком виде:

A = E k 2 – E k 1 . (3)

Теорема о кинетической энергии:

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой т равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

(4)

Физический смысл кинетической энергии:

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

Потенциальная энергия – это энергия взаимодействия тел.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей.

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой т вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1).

Если разность h 1 – h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg.

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

A = F∙s = m∙g∙ (h l – h 2).

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой т из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

А = – (Е р 2 – Е р 1). (9)

Потенциальная энергия обозначается буквой Е р.

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е р тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

E p = m∙g∙h . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей:

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h, где h < h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

Е p = –m∙gh

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Тогда физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
В МЕХАНИЧЕСКИХ ПРОЦЕССАХ

Потенциальная энергия характеризует взаимодействующие тела, а кинетическая энергия – движущиеся тела. И потенциальная, и кинетическая энергия изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля. Рассмотрим вопрос об изменениях энергии при взаимодействиях тел, образующих замкнутую систему.

Замкнутая система – это система, на которую не действуют внешние силы или действие этих сил скомпенсировано. Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы на них не действуют, то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии тел, взятому с противоположным знаком:

А = –(Е р 2 – Е р 1). (17)

По теореме о кинетической энергии, работа тех же сил равна изменению кинетической энергии:

A = E k 2 – E k 1 . (18)

Из сравнения равенств (17) и (18) видно, что изменение кинетической энергии тел в замкнутой системе равно по абсолютному значению изменению потенциальной энергии системы тел и противоположно ему по знаку:

E k 2 – E k 1 = –(E р 2 – E p 1) или Е k 1 + Е р 1 = E k 2 + E p 2 . (19)

Закон сохранения энергии в механических процессах:

сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной.

Сумма кинетической и потенциальной энергии тел называется полной механической энергией .

Для потенциального силового поля можно ввести понятие о потенциальной энергии как о величине, характеризующей «запас работы», которым обладает материальная точка в данном пункте силового поля. Чтобы сравнивать между собой эти «запасы работы», нужно условиться о выборе нулевой точки О, в которой будем условно считать «запас работы» равным нулю (выбор нулевой точки, как и всякого начала отсчета, производится произвольно). Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

Из определения следует, что потенциальная энергия П зависит от координат х, у, z точки М, т. е. что

т. е. потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

Отсюда видно, что при рассмотрении всех свойств потенциального силового поля вместо силовой функции можно пользоваться понятием потенциальной энергии. В частности, работу потенциальной силы вместо равенства (57) можно вычислять по формуле

Следовательно, работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном ее положениях.

Выражения потенциальной энергии для известных нам потенциальных силовых полей можно найти из равенств (59) - (59”), учитывая, что . Таким образом, будет:

1) для поля силы тяжести (ось z вертикально вверх)

2) для поля силы упругости (линейного)

3) для поля силы тяготения

Потенциальная энергия системы определяется так же, как и для одной точки, а именно: потенциальная энергия П механической системы в данном ее положении равна работе, которую произведут силы поля при перемещении системы из данного положения в нулевое,

При наличии нескольких полей (например, полей сил тяжести и сил упругости) для каждого поля можно брать свое нулевое положение.

Зависимость между потенциальной энергией и силовой функцией будет такой же, как и для точки, т. е.

Закон сохранения механической энергии. Допустим, что все действующие на систему внешние и внутренние силы потенциальны. Тогда

Подставляя это выражение работы в уравнение (50), получим для любого положения системы: или

Следовательно, при движении под действием потенциальных сил сумма кинетической и потенциальной энергий системы в каждом ее положении остается величиной постоянной. В этом и состоит закон сохранения механической энергии, являющийся частным случаем общего физического закона сохранения энергии.

Величина называется полной механической энергией системы, а сама механическая система, для которой выполняется закон консервативной системой.

Пример. Рассмотрим маятник (рис. 320), отклоненный от вертикали на угол и отпущенный без начальной скорости. Тогда в начальном его положении , где Р - вес маятника; z - координата его центра тяжести. Следовательно, если пренебречь всеми сопротивлениями, то в любом другом положении будет или

Таким образом, выше положения центр тяжести маятника подняться не может. При опускании маятника его потенциальная энергия убывает, а кинетическая растет, при подъеме, наоборот, потенциальная энергия растет, а кинетическая убывает.

Из составленного уравнения следует, что

Таким образом, угловая скорость маятника в любой момент времени зависит только от положения, занимаемого его центром тяжести, и в данном положении всегда принимает одно и то же значение. Такого рода зависимости имеют место только при движении под действием потенциальных сил.

Диссипативные системы. Рассмотрим механическую систему, на которую кроме потенциальных сил действуют неизбежные в земных условиях силы сопротивления (сопротивление среды, внешнее и внутреннее трение). Тогда из уравнения (50) получим: или

где - работа сил сопротивления. Так как силы сопротивления направлены против движения, то величина всегда отрицательная Следовательно, при движении рассматриваемой механической системы происходит убывание или, как говорят, диссипация (рассеивание) механической энергии. Силы, вызывающие эту диссипацию, называют диссипативными силами, а механическую систему, в которой происходит диссипация энергии, - диссипативной системой.

Например, у рассмотренного выше маятника (рис. 320) благодаря трению в оси и сопротивлению воздуха механическая энергия будет) со временем убывать, а его колебания будут затухать; это диссипативная система.

Полученные результаты не противоречат общему закону сохранения энергии, так как теряемая диссипативной системой механическая энергия переходит в другие формы энергии, например в теплоту.

Однако и при наличии сил сопротивления механическая система может не быть диссипативной, если теряемая энергия компенсируется притоком энергии извне. Например, отдельно взятый маятник, как мы видели, будет диссипативной системой. Но у маятника часов потеря энергии компенсируется периодическим притоком энергии извне за счет опускающихся гирь или заводной пружины, и маятник будет совершать незатухающие колебания, называемые автоколебаниями.

От вынужденных колебаний (см. § 96) автоколебания отличаются тем, что они происходят не под действием зависящей от времени возмущающей силы и что их амплитуда, частота и период определяются свойствами самой системы (у вынужденных колебаний амплитуда, частота и период зависят от возмущающей силы).